Earth Engine Tutorial #36: How to find out the greenest day of the year for each location

Earth Engine Tutorial #36: How to find out the greenest day of the year for each location

This tutorial shows you how to find out the greenest day of the year for each pixel location. The method can be generalized to find out the corresponding time of the maximum value of a timeseries for each pixel, such as the day with the hottest temperature record for each location during the past decades, the day with the largest amount of rainfall for each location during the past year.

Requirements

  • geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets

Installation

conda create -n gee python
conda activate gee
conda install mamba -c conda-forge
mamba install geemap -c conda-forge

Resources

Notebook:

Demo demo

Video

Step-by-step tutorial

Import libraries

import ee
import geemap

Create an interactive map

Map = geemap.Map()
Map

Define a region of interest (ROI)

countries = ee.FeatureCollection('users/giswqs/public/countries')
Map.addLayer(countries, {}, 'coutries')
roi = countries.filter(ee.Filter.eq('id', 'USA'))
Map.addLayer(roi, {}, 'roi')

Filter ImageCollection

start_date = '2019-01-01'
end_date = '2019-12-31'

l8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') \
    .filterBounds(roi) \
    .filterDate(start_date, end_date)

Create a median composite

median = l8.median()

visParams = {
  'bands': ['B4', 'B3', 'B2'],
  'min': 0,
  'max': 0.4,
}

Map.addLayer(median, visParams, 'Median')

Define functions to add time bands

def addNDVI(image): 
    ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI')
    return image.addBands(ndvi)
def addDate(image):
    img_date = ee.Date(image.date())
    img_date = ee.Number.parse(img_date.format('YYYYMMdd'))
    return image.addBands(ee.Image(img_date).rename('date').toInt())
def addMonth(image):
    img_date = ee.Date(image.date())
    img_doy = ee.Number.parse(img_date.format('M'))
    return image.addBands(ee.Image(img_doy).rename('month').toInt())
def addDOY(image):
    img_date = ee.Date(image.date())
    img_doy = ee.Number.parse(img_date.format('D'))
    return image.addBands(ee.Image(img_doy).rename('doy').toInt())

Map over an ImageCollection

withNDVI = l8.map(addNDVI).map(addDate).map(addMonth).map(addDOY)

Create a quality mosaic

greenest = withNDVI.qualityMosaic('NDVI')

Display the max value band

ndvi = greenest.select('NDVI')
palette = ['#d73027', '#f46d43', '#fdae61', '#fee08b', '#d9ef8b', '#a6d96a', '#66bd63', '#1a9850']
Map.addLayer(ndvi, {'palette': palette}, 'NDVI')
Map.addLayer(greenest, visParams, 'Greenest pixel')
Map

Display time bands

Map.addLayer(greenest.select('month'), {'palette': ['red', 'blue'], 'min': 1, 'max': 12}, 'Greenest month')
Map.addLayer(greenest.select('doy'), {'palette': ['brown', 'green'], 'min': 1, 'max': 365}, 'Greenest doy')

Did you find this article valuable?

Support Qiusheng Wu by becoming a sponsor. Any amount is appreciated!